
1

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

CISC 151
The UNIX Operating
System

Lecture 9

Richard L. Holladay, CCNA, Ph.D.

Lecture 9

UNIX Processes and Scheduling

3

Processes
Unit of Computation
Program/Application Composed of One or More
Interacting Processes
Processes interact with and utilize computer
resources
In Unix, each program is started as a process.
A process is a program in execution.
Usually only one copy of a program, but there may be
many processes running the same program.
To each interactive user (window):

only one process in foreground
may have several processes in background

2

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

4

httpd
lpd

/etc/init

kernel Process 0: Kernel bootstrap.
Start process 1.

Process 1: start other processes

inetd

/etc/getty

fork
exec

/bin/login
exec

shell
exec

/etc/getty

fork
exec

/bin/login
exec

shell
exec

condition terminal for login

check password

command interpreter

kernel mode
user mode

Processes

5

UNIX Process

Text

Process Status

Resources
Resources

File

UNIX kernel

Stack

Data

File

6

Unix Startup

Init process
last step in booting procedure
create other processes to allow the users to
login

Getty process
conditions for terminal connection
waits for user-id

display login on the screen

3

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

7

Unix Login

Login process
check password with the uid
execute .profile or .login (depends on default
shell)
display shell prompt

Shell process (command line interpreter)
Shell prompt ($, %)

8

UNIX Process

Process environment
Process id, parent-process-id, process-group-
id
Opened files
Working directory
File creation mask
Real user ID and group ID
Effective user ID and group ID
Resource limits

9

UNIX Process (Continued)

Environment variables
Signal action setting
Code

A child process inherits parent’s environment.

4

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

10

Start Unix Processes

Use “&” to execute a task in background
Example: $ sort infile > outfile &

Use ctrl-Z to suspend the foreground task,
and then use bg.
Use fg to move a background task to
foreground.

11

Examine Processes

Use ps to see the processes that you are
running.

$ ps
PID TTY TIME CMD
221 pts/4 4:15 netscape
201 pts/4 0:05 bash
215 pts/4 1:15 emacs-19

12

More on UNIX Processes

Each process has its own address space
Subdivided into text, data, & stack segments
a.out File describes the address space

OS Creates Descriptor to manage process
Process Identifier (PID) is an integer: user
handle for the Process (Descriptor)
Try “ps” and “Ps aux”

USER PID %CPU %MEM SZ RSS TT S START TIME COMMAND
wangz 25150 26.1 15.33048019308 pts/16 O Aug 05 6318:26 /apps/matlab/bin/s
manish 7590 25.1 0.821436 964 ? O Jul 22 24628:34 /apps/matlab/bin/s
marios 29536 0.6 3.5 5156 4376 pts/6 S 13:22:23 0:24 mailtool
steve 29893 0.2 0.8 1080 980 pts/18 S 17:41:11 0:00 -csh
root 29905 0.2 0.7 1040 888 pts/18 O 17:41:53 0:00 ps -aux

5

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

13

Threads vs. Processes
When Executing a.out, Running Heavyweight
Process

Internal State and Stack
Executable Program Text

A Lightweight Process or Thread is …
Schedulable Like a Process
Minimal Internal State and Allocated Resources

Threads are Spawned by Heavyweight Processes
Thread Utilizes Resources and Program Text
Some OSs and Programming Languages Support
Complex Process Framework

Shared Resources, Data, Program Text

14

When and How are Threads Used?

Threads Add an Extra Dimension to
Execution Environment

Thread Scheduler - Switch Context Among
Concurrently Executing Threads
Requirement for Coordinated Action, Since
Threads Share Same Program Text (Code)

Classic Use of Threads in Windowing
Systems

Multiple Active Threads in CDE (Unix)
Managing Windows and Icons
Process Input from Keyboard and Mouse
Fast Response Time to React to Change of
Window, Change of Mouse Pointer, etc.

15

Creating/Destroying Processes

UNIX fork Creates a Process
Spawning of Child Process
Creates a New Address Space
Copies Text, Data, & Stack Into New Address
Space
Provides Child With Access to Open Files
Child is Clone of Parent - Unix Creates Logical
Copy of Parent’s Program Text Segment

UNIX wait Allows a Parent to Wait for a
Child to Terminate
UNIX exec Allows a Child to Run a New
Program

6

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

16

Executing a UNIX Command

Shell ProcessShell Process

Process
executing
command

Process
executing
command

CMD> grep first f3

f3

read keyboard
fork a process

read file

Display
Results

Utilization of Unix C
Shell Command Line
Interpreter
Grep Command is
Parsed and Executed
Regular Expressions
with Wildcards

17

New program
segment

New data
segment

Process Creation
Processes created by
“fork” routine
Fork creates copy of
parent to form child
Parent and child

Share system data and
open files
Have different return
code (RC)
See, “man fork”

Call fork

RC=0

Call exec

Wait on
child

Subsequent
instructions

No

Yes

Parent
Call fork

RC=0

Call exec

Wait on
child

Subsequent
instructions

No

Yes

Child

18

Boot Process
Process init activated
Creates process for each
potential logon
Each logon process parent
shell for user
Usually logon spawns a shell
May have no shell and
launch application
When logon dies, init spawn
new logon

Run levels
0, 5, and 6 shutdown
1 single user at console
2 multiple users
3 multiple users with network
support
4 unused multiple users

7

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

19

Keeping track of processes
For each process, OS maintains a data structure, called
the process control block (PCB). The PCB provides a
way of accessing all information relevant to a process:

This data is either contained directly in the PCB, or else
the PCB contains pointers to other system tables.

Processes (PCBs) are manipulated by two main
components of the OS in order to achieve the effects of
multiprogramming:

Scheduler: determines the order in which processes will
gain access to the CPU. Efficiency and fair-play are issues
here.
Dispatcher: actually allocates CPU to the process
selected by the scheduler.

20

Process Control Block
PCB information associated with each process
includes:

Process State - e.g. new, ready, running, etc.
Program Counter - address of next instruction
to be executed
CPU registers - general purpose registers,
stack pointer, etc.
CPU scheduling information - process priority,
pointer
Memory Management information - base/limit
information
Accounting information - time limits, process
number
I/O Status information - list of I/O devices
allocated

21

Process Context
The context (or image) of a process can be described by

contents of main memory
contents of CPU registers
other info (open files, I/O in progress, etc.)

Main memory -- three logically distinct regions of memory:
text region: contains executable code (typically read-
only)
data region: storage area for dynamically allocated data
structure, e.g., lists, trees (typically heap data structure)
stack region: run-time stack of activation records

Registers: general registers, PC, SP, PSW, segmentation
registers
Other information:

open files table, status of ongoing I/O
process status (running, ready, blocked), user id, ...

8

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

22

Process States

Possible process states
Running: executing
Blocked: waiting for I/O
Ready: waiting to be scheduled

23

When are processes created?

1. System initialization (many daemons for
processing email, printing, web pages etc.)

2. Execution of a process creation system call
by a running process (fork or CreateProcess)

3. User request to create a new process
(executing new applications)

List of all active processes: ps (on Unix), Ctl-Alt-Del (on Windows)

24

When are processes terminated?

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary), due to bugs

4. Killed by another process (involuntary)

9

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

25

(Virtual) Memory

Static data

Code

Dynamic data

Free space

Stack

CPU

PSW

Program Counter

Stack Pointer

Recall:
How is information exchanged between
A program and its subroutines ?

Process Snapshot

26

Managing Processes

Command Grouping
Running jobs in background (bg)
brings jobs to foreground (fg)
Displaying job status (jobs command)
Suspending jobs (CTRL Z)
Killing processes or jobs (kill)

27

Command Grouping

You can run a set of commands on the same
command line by typing such commands as:
 ls ; who ; date <ENTER>

You can also, combine commands or files to
be run in both the foreground or background
(eg ls ; who or a & b ; c)

10

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

28

Command Grouping
UNIX has the ability to run programs in the
foreground and in the background.
This feature allows users of the UNIX system to run
lengthy processes without interfering with their other
tasks.
To run a command or script in the background, type
the symbol & after the command or filename (eg. who
&). Note that spaces are allowed...

29

Command Grouping
It is important to note that although these commands
appear to be in a sequence, the shell may execute
these in a different order may schedule jobs in a
order
For example, you may want to run both commands a
& b in the background, and run command c in the
foreground. Here is the command:

(a;b)&c

30

Bringing processes to foreground

When processes are run in the foreground,
the shell will wait for the command to finish
before allowing the user to enter another
command (thus background processes are
useful)
If a process or processes are in the
background (or suspended), you can bring it
to the foreground by typing fg

11

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

31

Displaying job status with the jobs
command
 You can display the status of jobs that are

running in the background by typing the UNIX
command jobs

jobs commands give a listing of jobs running
in the background:
jobs with a plus sign “+” indicates default job
to bring to foreground by entering fg
Can bring numbered job to foreground by
entering fg %(job#) - Note space between
fg & %

32

Suspending jobs (CTRL Z)

You can suspend or stop the execution of processes
while they are running in the “foreground” by pressing
<CTRL><Z>
When you press these keys, the process is
suspended and placed into the background in order
to free up the shell for other operations.
You can resume process by bringing it to the
foreground or have it run in background

33

Restarting Suspended Processes
in the Background

A process may take such a long time that it is better
to suspend the job (i.e. send it to the background,
and then have it run in the background).

This will allow you to operate in the foreground
If a process or processes are suspended in the
background, you can have it continue running in the
background by entering bg (rules such as bg %(job#)
also apply)

12

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

34

Terminating processes or jobs
(kill)

Depending on your permissions, you may be able to
abort or “kill” a process.
Only root is allowed to kill other user’s processes, but
as a user, you can processes that you have created.
Killing a process is also useful to halt processes that
are running in the background since <CTRL><C> or
DELETE keys in foreground won’t work

35

Procedure to “Kill” a Process

 Procedure:
We are assuming that you are killing one of
your own process (you are logged in…)
View process by typing ps -l
Carefully locate PID to kill
Type kill %(job#) to kill that job number (can
also use kill PID or kill -9 PID to kill process.
The kill command by itself kills more recent
stopped job

36

Threads

Processes do not share resources well
high context switching overhead

A thread (or lightweight process)
basic unit of CPU utilization; it consists of:

program counter, register set and stack space
A thread shares the following with peer threads:

code section, data section and OS resources (open
files, signals)

Collectively called a task.
Heavyweight process is a task with one
thread.
Thread support in modern systems - e.g.
Solaris.

13

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

37

Interprocess Communication (IPC)

Mechanism for processes to communicate and
synchronize their actions.

Via shared memory
Via Messaging system - processes communicate
without resorting to shared variables.

Messaging system and shared memory not mutually
exclusive –

can be used simultaneously within a single OS or
a single process.

IPC facility provides two operations.
send(message) - message size can be fixed or variable
receive(message)

Direct vs. Indirect communication.

38

When is IPC necessary?
Passing data to another process
Accessing resources used by others
Producer-consumer problem

Interprocess Communication (IPC)

UNIX Scheduling

14

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

40

Scheduling
Introduction to Scheduling (1)

Bursts of CPU usage alternate with periods of I/O wait
a CPU-bound process
an I/O bound process

41

Introduction to Scheduling (2)

When to schedule?
On process creation
On process exit
When a process blocks
I/O interrupt

42

Introduction to Scheduling (3)

Two methods
Non-preemptive scheduling
Preemptive scheduling

15

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

43

Scheduling Algorithm Goals

44

Scheduling in Batch Systems

Examples of
(a) First-come first-serve (FIFO)
(b) Shortest job first scheduling

45

Scheduling in Interactive Systems

Round Robin Scheduling
list of executable processes
list of executable processes after B uses up
its quantum

16

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

46

Scheduling in Interactive Systems

Priority scheduling
Assign priority to each process
Decrease priority when job has completed

47

Scheduling in Interactive Systems

A scheduling algorithm with four priority classes

48

UNIX Scheduler

The UNIX scheduler is based on a multilevel queue structure

17

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

49

Resources

Examples of computer resources:
printers
tape drives
tables

Processes need access to resources in
reasonable order
Suppose a process holds resource A and
requests resource B

at same time another process holds B and
requests A
both are blocked and remain so

50

Resources

Deadlocks occur when …
processes are granted exclusive access to
devices
we refer to these devices generally as resources

Preemptable resources
can be taken away from a process with no ill
effects

Nonpreemptable resources
will cause the process to fail if taken away

51

Resources (2)

Sequence of events required to use a resource:
1) Request the resource
2) Use the resource
3) Release the resource

Must wait if request is denied
Requesting process may be blocked
may fail with error code

18

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

52

Introduction to Deadlocks

Formal definition :
A set of processes is deadlocked if each process
in the set is waiting for an event that only another
process in the set can cause
Usually the event is the release of a
currently held resource
None of the processes can …

run
release resources
be awakened

53

Four Conditions for Deadlock

1) Mutual exclusion condition
Each resource assigned to 1 process or is available

2) Hold and wait condition
Process holding resources can request additional

3) No preemption condition
Previously granted resources cannot forcibly taken
away

4) Circular wait condition
• Must be a circular chain of 2 or more processes
• Each is waiting for resource held by next member

of the chain

54

Deadlock Modeling (1)

Modeled with directed graphs

Resource R assigned to Process A
Process B is requesting/waiting for Resource S
Process C and D are in deadlock over Resources T and
U
Circular-Wait condition

19

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

55

Deadlock Strategies

1) Just ignore the problem altogether
2) Detection and recovery
3) Dynamic avoidance

careful resource allocation

4) Prevention
negating one of the four necessary conditions

56

The Ostrich Algorithm

Put your head in the sand
Do not fear deadlocks
Ignore them

57

Detect & Recover Deadlocks

Detect circular wait
Recover the deadlock by

Preemption
Rollback
Killing (once more the Mafia method)

20

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 9

58

Deadlock Prevention

Eliminate one of the four deadlock conditions
Mutual exclusion
Hold and wait
Preemption
Circular wait

