
1

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

CISC 151
The UNIX Operating
System

Lecture 8

Richard L. Holladay, CCNA, Ph.D.

Lecture 8

awk and Perl

3

A programming language for handling
common data manipulation tasks with only a
few lines of program
Awk is a pattern action language
The language looks a little like C but
automatically handles input, field splitting,
initialization, and memory management

Built-in string and number data types
No variable type declarations

Awk is a great prototyping language
Start with a few lines and keep adding until it
does what you want

Awk

2

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

4

Awk

Awk’s purpose: to give Unix a general
purpose programming language that handles
text (strings) as easily as numbers

This makes Awk one of the most powerful of
the Unix utilities

Awk process fields while ed/sed process lines
nawk (new awk) is the new standard for Awk

Designed to facilitate large awk programs
Awk gets it’s input from

files
redirection and pipes
directly from standard input

5

History

Originally designed/implemented in 1977 by
Al Aho, Peter Weinberger, and Brian
Kernigan

In part as an experiment to see how grep and
sed could be generalized to deal with numbers
as well as text
Originally intended for very short programs
But people started using it and the programs
kept getting bigger and bigger!

In 1985, new awk, or nawk, was written to
add enhancements to facilitate larger
program development

Major new feature is user defined functions

6

Other enhancements in nawk include:
Dynamic regular expressions

Text substitution and pattern matching functions
Additional built-in functions and variables
New operators and statements
Input from more than one file
Access to command line arguments

nawk also improved error messages which
makes debugging considerably easier under
nawk than awk
On most systems, nawk has replaced awk

History

3

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

7

BEGIN

pattern {action}

pattern {action}

.

.

.

pattern { action}

END

Structure of an AWK Program

An Awk program consists
of:

An optional BEGIN
segment

For processing to execute
prior to reading input

pattern - action pairs
Processing for input data
For each pattern matched,
the corresponding action is
taken

An optional END segment
Processing after end of
input data

8

Pattern-Action Structure

Every program statement has to have a
pattern, an action, or both
Default pattern is to match all lines
Default action is to print current record
Patterns are simply listed; actions are
enclosed in { }s
Awk scans a sequence of input lines, or
records, one by one, searching for lines that
match the pattern

Meaning of match depends on the pattern
/Beth/ matches if the string “Beth” is in the
record
$3 > 0 matches if the condition is true

9

Running an AWK Program

There are several ways to run an Awk
program

awk ‘program’ input_file(s)
program and input files are provided as
command-line arguments

awk ‘program’
program is a command-line argument; input is
taken from standard input (yes, awk is a filter!)

awk -f program_file_name input_files
program is read from a file

4

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

10

Errors

If you make an error, Awk will provide a diagnostic
error message
awk '$3 == 0 [print $1 }' emp.data
awk: syntax error near line 1
awk: bailing out near line 1

Or if you are using nawk
nawk '$3 == 0 [print $1 }' emp.data
nawk: syntax error at source line 1

context is
$3 == 0 >>> [<<<

1 extra }
1 extra [

nawk: bailing out at source line 1
1 extra }
1 extra [

11

Awk as a Filter

Since Awk is a filter, you can also use pipes
with other filters to massage its output even
further
Suppose you want to print the data for each
employee along with their pay and have it
sorted in order of increasing pay

awk ‘{ printf(“%6.2f %s\n”, $2 * $3, $0) }’
emp.data | sort

12

Selection

Awk patterns are good for selecting specific
lines from the input for further processing
Selection by Comparison

$2 >=5 { print }
Selection by Computation

$2 * $3 > 50 { printf(“%6.2f for %s\n”, $2 * $3,
$1) }

Selection by Text Content
$1 == “Susie”
/Susie/

Combinations of Patterns
$2 >= 4 || $3 >= 20

5

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

13

Data Validation

Validating data is a common operation
Awk is excellent at data validation

NF != 3 { print $0, “number of fields not equal
to 3” }
$2 < 3.35 { print $0, “rate is below minimum
wage” }
$2 > 10 { print $0, “rate exceeds $10 per hour”
}
$3 < 0 { print $0, “negative hours worked” }
$3 > 60 { print $0, “too many hours worked” }

14

BEGIN and END

Special pattern BEGIN matches before the
first input line is read; END matches after the
last input line has been read
This allows for initial and wrap-up processing
BEGIN { print “NAME RATE HOURS”; print

“” }
{ print }

END { print “total number of employees is”, NR
}

15

Computing with AWK

Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked more than 15

hrs”}
Computing Sums and Averages is also
simple

{ pay = pay + $2 * $3 }
END { print NR, “employees”

print “total pay is”, pay
print “average pay is”, pay/NR

}

6

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

16

Handling Text

One major advantage of Awk is its ability to
handle strings as easily as many languages
handle numbers
Awk variables can hold strings of characters
as well as numbers, and Awk conveniently
translates back and forth as needed
This program finds the employee who is paid
the most per hour

$2 > maxrate { maxrate = $2; maxemp = $1 }
END { print “highest hourly rate:”, maxrate, “for”,

maxemp }

17

String Concatenation
New strings can be created by combining old
ones

{ names = names $1 “ “ }
END { print names }

Printing the Last Input Line
Although NR retains its value after the last
input line has been read, $0 does not

{ last = $0 }
END { print last }

Handling Text

18

Built-in Functions

Awk contains a number of built-in functions.
length is one of them.
Counting Lines, Words, and Characters using
length (a poor man’s wc)

{ nc = nc + length($0) + 1
nw = nw + NF
}

END { print NR, “lines,”, nw, “words,”, nc,
“characters” }

7

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

19

Regular Expressions in Awk
Awk uses the same regular expressions we’ve been
using

^ $ - beginning of/end of line
. - any character
[abcd] - character class
[^abcd] - negated character class
[a-z] - range of characters
(regex1|regex2) - alternation
* - zero or more occurrences of preceding expression
+ - one or more occurrences of preceding expression
? - zero or one occurrence of preceding expression
NOTE: the min max {m, n} or variations {m}, {m,}
syntax is NOT supported

20

Awk Variables

$0, $1, $2, $NF
NR - Number of records processed
FNR - Number of records processed in
current file
NF - Number of fields in current record
FILENAME - name of current input file
FS - Field separator, space or TAB by default
OFS - Output field separator, space or TAB
default
ARGC/ARGV - Argument Count, Argument
Value array

Used to get arguments from the command line

21

Command Line Arguments

Accessed via built-ins ARGC and ARGV
ARGC is set to the number of command line
arguments
ARGV[] contains each of the arguments

For the command line
awk ‘script’ filename

ARGC == 2
ARGV[0] == “awk”
ARGV[1] == “filename
the script is not considered an argument

8

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

22

ARGC and ARGV can be used like any other
variable
The can be assigned, compared, used in
expressions, printed
They are commonly used for verifying that the
correct number of arguments were provided

Command Line Arguments

23

Operators

= assignment operator; sets a variable equal
to a value or string
== equality operator; returns TRUE is both
sides are equal
!= inverse equality operator
&& logical AND
|| logical OR
! logical NOT
<, >, <=, >= relational operators
+, -, /, *, %, ^
String concatenation

24

Control Flow Statements

Awk provides several control flow statements
for making decisions and writing loops
If-Else

if (expression is true or non-zero){
statement1
}

else {
statement2
}

where statement1 and/or statement2 can be
multiple statements enclosed in curly braces {
}s
the else and associated statement2 are
optional

9

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

25

Loop Control

While
while (expression is true or non-zero) {

statement1
}

26

For Loops

For
for(expression1; expression2; expression3) {

statement1
}

This has the same effect as:
expression1
while (expression2) {

statement1
expression3
}
for(;;) is an infinite loop

27

Do While

Do While
do {

statement1
}

while (expression)

10

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

28

Built-In Functions
Arithmetic

sin, cos, atan, exp, int, log, rand, sqrt
String

length, substitution, find substrings, split strings
Output

print, printf, print and printf to file
Special

system - executes a Unix command
system(“clear”) to clear the screen
Note double quotes around the Unix command

exit - stop reading input and go immediately to the
END pattern-action pair if it exists, otherwise exit the
script

Perl

30

What is Perl?

Perl is a Portable Scripting Language
No compiling is needed.
Runs on Windows, UNIX and LINUX

Fast and easy text processing capability
Fast and easy file handling capability
Written by Larry Wall
“Perl is the language for getting your job
done.”

11

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

31

How to Access Perl

From Mesa’s network
To install at home

www.perl.com Has rpm's for Linux
www.activestate.com Has free binaries for
Windows

Other languages: Python, Tcl, and others
Latest Stable Version is 5.8.7
Development Release 5.9.2

To check if Perl is working and the version
number

% perl –v

32

Perl under Windows

33

Komodo

Komodo is ActiveState's cross-platform, multi-
language Integrated Development Environment (IDE)

Similar to Microsoft’s Visual Studio IDE
Komodo supports development in numerous UNIX-
based languages, including Perl, Python, PHP, XSLT,
Tcl, JavaScript, and more.
Excellent Tutorials, especially for Perl
Runs on Linux, Mac OS X, Solaris, and Windows.
ActiveState has free Windows versions of Perl,
Python, and Tcl that can be downloaded and run
seamlessly in Komodo (or from the command-line)
Cost for Komodo:

Work and Commercial Use: $295
Personal & Student Use: $29.95

12

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

34

35

Resources For Perl

Books:
Programming Perl (The “Camel”)

By Larry Wall,Tom Christiansen and Jon Orwant
Published by O'Reilly
The Perl Bible

Learning Perl (The “Llama”)
By Randal L. Schwartz, Tom Phoenix, Brian D Foy
Published by O'Reilly

Web Site
http://safari.oreilly.com

Contains both Programming Perl and Learning
Perl in ebook form

36

The “Camel”

The “Llama”

13

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

37

Web Sources for Perl
Web

www.perl.com
www.perldoc.com
www.perl.org
www.perlmonks.org
www.cpan.org

38

The Basic Hello World Program
Program:

#!/usr/local/bin/perl -w
print “Hello World!\n”;

Save this as “hello.pl”
Give it executable permissions

chmod ug+x hello.pl
Run it as follows:

./hello.pl

39

“Hello World” Observations

“.pl” extension is optional but is commonly used
The first line “#!/usr/local/bin/perl” tells UNIX where
to find Perl
“-w” switches on warning : not required but a really
good idea

14

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

40

Perl Overview

In the hierarchy of programming
language, Perl is located half-way
between high-level languages such as
Pascal, C and C++, and shell scripts
(languages that add control structure to
the Unix command line instructions) such
as sh, sed and awk.

41

Advantages of Perl (1)
Perl combines the best (according to its
admirers) features of:

Unix/Linux shell programming
sed, grep, awk
C
Cobol

Shell scripts are usually written in many small
files that refer to each other.

Perl achieves the functionality of such scripts
in a single program file.

42

Advantages of Perl (2)
Perl offers extremely strong regular
expression capabilities, which allow fast,
flexible and reliable string handling
operations, especially pattern matching.

As a result, Perl works particularly well in text
processing applications.

It was Perl that allowed a lot of text
documents to be quickly moved to the HTML
format in the early 1990s, allowing the Web to
expand so rapidly.

15

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

43

Disadvantages of Perl

Perl is a jumble! It contains many, many
features from many languages and tools.
It contains different constructs for the
same functionality (for example, there
are at least 5 ways to perform a one-line
if statement).

It is not a very readable language.
You cannot distribute a Perl program as
an opaque binary. That is, you cannot
really commercialize products you
develop in Perl.

44

Perl resources and versions

http://www.perl.org tells you everything
that you want to know about Perl.
Perl 1.0 released in 1987
What you will see here is Perl 5.
Current release: 5.8.7 released in July,
2002.
Perl 6 (http://dev.perl.org/perl6/) is the
next version, still under development, but
moving along nicely. The first book on
Perl 6 is in stores
(http://www.oreilly.com/catalog/perl6es).

45

Perl is cited in the OED (Oxford
English Dictionary

Perl, n.

PERL. [Alteration of pearl n., with omission of -a- to differentiate it from
an existing programming language called PEARL.

Coined by Larry Wall in early 1987; the program was publicly
released on 18 December of that year. Explanations of the name as an
acronym (e.g. < the initial letters of Practical Extraction and Report
Language, < the initial letters of Pathologically Eclectic Rubbish Lister),
although found early in the documentation for the language, are
subsequent rationalizations.]

A high-level interpreted programming language widely used for a
variety of tasks and especially for applications running on the World
Wide Web.

The form Perl is preferred for the language itself; perl is used for the
interpreter for the Perl language.

16

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

46

Basic Structure

Similar to C, C++, or Java
Can write full-blown O-O code
semi-colons separate executable statements
{ } delimit blocks, loops, subroutines
Comments begin with # and extend to end of
line
No main() function – code executed top-down.
Function arguments are comma-separated

parentheses are (usually) optional

47

Before we get started…

Perl is a very lenient language. It will allow
you to do a whole host of things that you
probably shouldn't be able to.

printing a variable that you never assigned to
trying to add 5 + 'foo'

If you want Perl to warn you about this sort of
thing (and you do): use warnings;

You may see legacy code that enables
warnings by adding "-w" to the end of the
shebang

48

Perl Data Types

There are 3 main data types in Perl:
scalars
arrays
hashes

Scalars can be numbers or letters, like ints and
strings.
Arrays are lists that usually store the same types
of data, arranged using the same variable types.
Hashes store key values paired with data.
Hashes differ from arrays in the fact that you can
use any type of object as your key value, where
arrays use integers. This makes hashes so much
more powerful.

17

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

49

Scalars

A Scalar variable contains a single value.
All of the standard types from C can be stored in a scalar
variable

int, float, char, double, etc
No declaration of type of variable

Scalar variable name starts with a $
Next character is a letter or underscore
Remaining characters: letters, numbers, or underscores.

name can be up to 255 characters long
don't do that.

All scalars have a default value of undef before
assigned a value. (Not to be confused with 5-character
string 'undef')

50

Examples

$num = 42;
$letter = "a";
$name = "Paul";

NOTE! Strings are *single values*!
$grade = 99.44;
$Big_String = "The Quick Brown Fox…";

51

Package vs Lexical variables

Package variables are global.
Lexical variables are 'local' to innermost inclosing
block/file

In Perl, 'local' means something else entirely
Package variables belong to a given package,
but can be accessed anywhere, by any piece of
code.

default package is "main".
other packages declared with the package
statement.

Package variables are not declared. They simply
exist.

18

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

52

Lexical variables

declared with keyword my
exist only from time of declaration until end of
innermost enclosing block

or end of file, if not declared in a block
my $file = 'text.txt';
my ($fname, $lname) = ('Paul', 'Lalli');
print "My name is: $fname $lname\n";

53

Package variables

#!/usr/bin/perl
$main::name = 'Paul';
$Lalli::type = 'faculty';
print "$main::name is a member of
$Lalli::type\n";

54

Gee, that's helpful…

If you use a package variable without fully
qualifying it (ie, providing its package name), Perl
just assumes you meant the current package:
#!/usr/bin/perl
my $name = 'John';
my $grade = 97.43;
print "$nane has grade: $Grade\n";
#OOPS! $main::nane and $main::Grade
#previously unused, so contain
#undef - prints the empty string

19

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

55

Commenting

Commenting is done in Perl to make your code
more understandable to other coders as well as
to help you pick up where you left off.
Comments in Perl are marked with the hash sign
(#) which works like to the double slashes (//) in
C++ or Java.
e.g. # Insert Comments Here

*Be sure to use comments where appropriate

56

Let's be a little more strict

You can see the kinds of problems this helpful
"feature" can create.
The feature can be disabled with the pragma:
use strict;
All package variables must now be fully qualified
Typo'ing a lexical variable will now result in a
compilation error.
Best Practice: Always use strict; and use lexical
variables unless you have a *really* good reason to
use package variables.

57

Lists

A list is a comma-separated sequence of scalar
values.
Any number, and any types of scalars can be
held in a list:
(42, 'Douglas Adams', 'HHGttG');
Lists are passed to functions, stored in arrays,
and used in assignments
my ($foo, $bar, $baz) =
(35, 43.4, 'hello');

20

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

58

List assignments

An assignment of a list of variables need not
contain the same number of values on the left
and right:
my ($foo,$bar)=(34,'hello',98.3);

98.3 simply discarded
my ($alpha, $beta) = 5;

$alpha gets 5, $beta remains undefined
But it now exists!

List assignments can be used to 'swap'
variables:

my ($one, $two) = ('alpha', 'beta');
($one, $two) = ($two, $one);

59

Arrays

Arrays are variables that contain a list.
Some texts say that "array" is interchangeable
with "list". These books are *wrong*.
Analogous to difference between a string value
'Paul' and the variable $name that holds it.

Arrays are not declared with any size or type.
They can hold lists containing any number or
type of values.
Size can grow/shrink dynamically.

60

Array variables

All array variable names begin with @
Just like scalars, second char is either a letter or
underscore, and remaining are letters,
underscores, or numbers.
my (@s, @stuff, $size);
@s =('a', 'list', 'of', 'strings');
@stuff = (32, 'Paul', 54.09);

21

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

61

Accessing array elements

To get at a specific element of the array, place
the index number in [] after the array name, and
replace the @ with a $

You're accessing a *single* value
my @foo = ("Hello", "World");
my $greeting = $foo[0];
my $location = $foo[1];
my @age =('I am', 25, 'years old');
$age[1] = 26;
@age now => ('I am', 26, 'years old')

62

Arrays and Scalars

my $foo = 3;
my @foo = (43.3, 10, 5.12, 'a');
$foo and @foo are *completely unrelated*
In fact, $foo has nothing to do with $foo[2];
"This may seem a bit weird, but that's okay,
because it is weird."

Programming Perl, pg. 54

63

Hashes

Also known as associative arrays
a list of key/value pairs.
Similar to arrays, but 'indices' can be any scalar
value, not just integers.

both the keys and values can be any scalar
value, including multiple types in the same hash.

Used to maintain a list of corresponding values.
Hash names start with a %

remainder follows same rules as array & scalar

22

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

64

Hash Example

my %points = ('touchdown' => 6,
'point after' => 1, 'safety' =>
2, 'field goal' => 3);
Similar to arrays, access specific element
by replacing % with $, and inclosing the
key in { }
print "Safety:
$points{safety}\n";
Tip: Any time you feel the need to keep
track of two lists of values, and access
corresponding elements in each list – you
want a hash.

65

Writing to a hash

Keys must be distinct. Writing the value of a
hash at an existing key overwrites the existing
value
my %n =
('two'=>'beta', 'one'=>'alpha');

$n{two} = 2;
#%n still has only 2 key/value pairs
$n{last} = 'omega';
#%n now has 3 key/value pairs

66

Built-in Variables

Perl pre-defines some special variables
See Chapter 28 of Camel for full list

or perldoc perlvar
$! – last error received by operating system
$, – string used to separate items in a printed list
$" – string to use to separate items in an
interpolated array (this makes sense next week)
$_ - "default" variable, used by several functions
%ENV – Environment variables
@INC – directories Perl looks for include files
$0 – name of currently running script
@ARGV – command line arguments

23

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

67

Reading from the keyboard

The "diamond" operator: <>
Encloses the filehandle you want to read
from. For now, the only filehandle is STDIN:
my $line = <STDIN>;

Reads next line from standard input (ie, the
keyboard), and stores it in $line.

68

chomp LIST

When you read a line, the *entire* line is read –
including the trailing "\n".
If you don't want the "\n", make sure you chomp
your string.
chomp takes a list of strings. If any string passed in
contains a trailing newline, that newline is removed.

Operates directly on argument
Does not return the "chomp"ed string

Returns the number of newlines removed
Does not remove multiple newlines from a single
string.

69

chomp examples

my $input = <STDIN>;
chomp $input;
This is so common that there's a shorthand idiom:

chomp (my $input = <STDIN>);
my @strings =
("foo\n", "bar", "baz\n\n");

chomp @strings;
@strings ("foo", "bar", "baz\n");

There exists a similar function: chop
removes last character of a string, regardless of
what it is.

24

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

70

Perl Modules
What are Perl Modules?

Batches of reusable code
Allow for object oriented Perl Programming

Comprehensive Perl Archive Network (CPAN)
Perl utilities
Perl Modules
Perl documentation
Perl distribution

71

CPAN Organization
CPAN Material is organized by

Modules
Distributions
Documentation
Announcements
Ports
Scripts
Authors

Distributions are ‘tar-gzipped’
tar
gzip

72

Categories of Modules
by-author

Modules are organized by author’s registered
CPAN name

by-category
Modules categorized by subject matter

by-module
Modules categorized by module name

25

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 8

73

Installing a Module
After you have gunziped and untared your module
you have two options on installing your module
depending upon if you have root privileges to the
location where perl modules are installed or you
don’t.

If you have root privileges or write access:
perl Makefile.PL
make
make test
make install

