
1

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

CISC 151
The UNIX Operating
System

Lecture 7

Richard L. Holladay, CCNA, Ph.D.

Lecture 7

Shell Programming

3

What is a shell?

The user interface to the operating system
Functionality:

Execute other programs
Manage files
Manage processes

Full programming language
A program like any other

This is why there are so many shells

2

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

4

Shell History

First shell (sh)
written by Ken
Thompson in
1972

Shell features
evolved as
UNIX grew

5

Most Commonly Used Shells

/bin/csh C shell
/bin/tcsh Enhanced C Shell

/bin/sh The Bourne Shell / POSIX shell
/bin/ksh Korn shell
/bin/bash Korn shell clone, from GNU

All UNIX systems include C shell and its
predecessor, the Bourne shell
bash probably the most popular

6

Other Shells
MH shell (msh): add email access.
Job Control Shell (jsh): a version of Bourn shell
includes C shell-like job control.
Remote Shell or Restricted Shell (rsh): for sites that
have security considerations.
Secure Shell (ssh): is intend to replace rsh. It has
strong authentication and secure connections over
unsecured channels.
Portable Operating System Interface (POSIX): Perl
interface to IEEE Std 1003.1, a superset of the Bourne
shell.
Z Shell (zsh): include almost all good feature of other
shells.

3

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

7

The Shell of Linux
Linux has a variety of different shells:

Bourne shell (sh), C shell (csh), Korn shell
(ksh), TC shell (tcsh), Bourne Again shell
(bash).

Certainly the most popular shell is bash.
Bash is an sh-compatible shell that
incorporates useful features from the Korn
shell (ksh) and C shell (csh).
It is intended to conform to the IEEE POSIX
P1003.2/ISO 9945.2 Shell and Tools
standard.
It offers functional improvements over sh for
both programming and interactive use.

8

Choose Your Working Shell

First check out the available shells in the
system
Check the current working shell
Switch between shells:
• csh: to switch to C shell
• ksh: to switch to K shell
• bash: to switch to B again shell
• tcsh: to switch to terminal based C shell
• sh: to switch to the Shell

9

Identifying Your Shell

ls -lFd /bin/*sh* lists various shells in the
system.
ls -lFd /usr/local/bin/*sh* list the various
shells of the local system.
echo $SHELL or grep 'yourid'
/etc/passwd: to find out you default shell.

4

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

10

Identifying Your Shell

$$: to display the process identifier pid of your
current shell.
ps: to display your current running process.
ps –p $$: to display your current shell.
ps -ef | grep $$: to identify your current
working shell.
Check the symbols to identify your working
shell. % means csh or tcsh. $ means bsh or
ksh. But they might be different.
chsh: to change your shell. (Not available in
our CSE)

11

Ways to use the shell

Interactively
When you log in, you interactively use the
shell

Scripting
A set of shell commands that constitute an
executable program

12

Functions and Features of Shells

Command-line interpretation
Reserved words
Shell meta-characters (wild cards)
Access to and handling of program
commands
File handling: input/output redirection and
pipes
Maintenance of variables
Environment control
Shell programming

5

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

13

How the Kernel and the Shell
Interact
All shells run programs the same way

A sort executed from csh works the same
way a sort executed from bash does

Kernel of UNIX has been loaded from disk
to memory when UNIX has been brought
on line.
Kernel will remain there until you turn off
the machine.
Program init runs as a background and
remains running until shutdown. The
process flow from the kernel through the
login process is like the following figure:

15

The Shell and the Child Process

After you finish logging on, the shell program
layer is in direct contact with the kernel.
If you enter command such as “ls”, the shell
locates the actual program file “/bin/ls” and
passes it to the kernel to execute.
The Kernel then create a new child process
area, load the program and executes the
instruction.
After the process complete, the kernel
recovers the process area and returns control
to the parent shell program

6

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

16

Auto-Execution of the Shell

Some UNIX resources can execute a shell
program without human interaction, which we
can Auto-Execution.
Example cron (clock daemon)
To use this feature, the user need to specify
the shell to run in the first line of the shell
program.
Example: $! /bin/sh

17

The Shell Environment
env | cat -n: to list the various aspects of
your working environment.
Variable Description

HOME: This is your home directory
obtained from the fourth field of the
password file
SHELL: kind of shell you are using
TERM: Your terminal definition. You can
define it to the appropriate value within
.login file at your home directory
USER: Your user ID information.

18

The Shell Environment
PATH: The directories definition so that a
command can be searched through them.
MAIL: Your email storage place
LOGNAME: The synonym of the user
NAME: Your real name information storage
place.

You can personalize your shell environment
by define anything in the environment.
Certain programs can read many
environment variables that customize their
behaviour.

7

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

19

Shell Configuration Files
.profile: for bash shell
.bashrc: for bash shell.
.cshrc: for csh shell.
.login: for tcsh shell (default shell of cse).
.plan: for user information look up (finger)
command.

20

Shell Programming
As well as using the shell to run commands you can use
its built-in programming language to write your own
commands or programs.
Creating and executing the shell script:

Use a text editor to create a file:
vi filename

Define execute permission:
chmod u=rwx filename

Execute the script
filename

21

Origin of Scripting Languages

Scripting languages originated as job control
languages

1960s: IBM System 360 had the Job Control
Language
Scripts used to control other programs

Launch compilation, execution
Check return codes

Scripting languages got increasingly more
powerful in the UNIX world

Shell programming, AWK, Tcl/Tk, Perl
Scripts used to combine components

8

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

22

System Programming Languages

System programming languages replaced
assembly language

Benefits:
The compiler hides unnecessary details, so
these languages have a higher level of
abstraction, increasing productivity
They are strongly typed, i.e. meaning of
information is specified before its use, enabling
substantial error checking at compile time
They make programs more portable

23

Higher-level Programming

Scripting languages provide an even higher-
level of abstraction

The main goal is programming productivity
Performance is a secondary consideration

Modern SL provide primitive operations with
greater functionality

Scripting languages are usually interpreted
Interpretation increases speed of development

Immediate feedback
Compilation to an intermediate format is
common

24

Higher-level Programming

They are weakly typed
i.e., Meaning of information is inferred
Less error checking at compile-time

Run-time error checking is less efficient, but
possible

Weak typing increases speed of development
More flexible interfacing
Fewer lines of code

• They are not usually appropriate for
Efficient/low-level programming
Large programs

9

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

25

Typing and Productivity

26

UNIX Programs
Means of input:

Program arguments
[control information]
Environment
variables
[state information]
Standard input [data]

Means of output:
Return status code
[control information]
Standard out [data]
Standard error
[error messages]

27

Shell Scripts

A shell script is a regular text file that contains
shell or UNIX commands

Before running it, it must have execute
permission:

chmod +x filename

A script can be invoked as:
ksh name [arg …]
ksh < name [args …]
name [arg …]

10

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

28

Shell Scripts

When a script is run, the kernel determines
which shell it is written for by examining the
first line of the script

If 1st line starts with #!pathname-of-
shell, then it invokes pathname and
sends the script as an argument to be
interpreted
If #! is not specified, the current shell
assumes it is a script in its own language

leads to problems

29

Simple Example

#!/bin/sh

echo Hello World

30

Scripting vs. C Programming

Advantages of shell scripts
Easy to work with other programs
Easy to work with files
Easy to work with strings
Great for prototyping. No compilation

Disadvantages of shell scripts
Slow
Not well suited for algorithms & data structures

11

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

31

Programming or Scripting ?

Difference between programming and
scripting languages:

Programming languages are generally a lot
more powerful and a lot faster than
scripting languages.
Programming languages generally start from
source code and are compiled into an
executable. This executable is not easily
ported into different operating systems.

32

Programming or Scripting ?

A scripting language also starts from
source code, but is not compiled into an
executable.

Rather, an interpreter reads the instructions in
the source file and executes each instruction.
Interpreted programs are generally slower than
compiled programs.
The main advantage is that you can easily port
the source file to any operating system.

bash is a scripting language.
Other examples of scripting languages are Perl,
Lisp, and Tcl.

33

Overview of Shell Scripts

At their simplest, shell scripts are are just
an ASCII file with Unix commands in them.
Comments can be in a shell script.

A comment is a ‘#’ anywhere on a line and
everything following to the end of the line.

Shell scripts are fed, one line at a time, to
a particular shell and interpreted by that
shell as it sees the commands.

12

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

34

Using UNIX Shell Scripts

Shell scripts can be a very effective tool for
prototyping applications, or in many cases,
developing production ready applications
You can write shell scripts that present user-
friendly screens and perform most of the
functions that you would expect from an
application written in a compiled language
such as “C”.
Shell scripts also save you time by
automating long command sequences that
you must perform often

good for administration tasks, even if you’re
not the Administrator

35

Activity 1 – A First Shell Script
Create a new file named hello with vi

$ vi hello
Specify the shell

#!/bin/sh
Write the rest of the script

#!/bin/sh
echo Hello!
Use the echo and whoami commands
with command substitution to
print the username
echo I am `whoami’

Save file and Exit vi (<esc> :s :q)
Make your script executable

chmod u=rwx hello

36

Activity 1 – A First Shell Script
Run script:

$ hello

“I am whoami”
not exactly
what we wanted!

Why?

Used ‘ under “
on the keyboard
(single quotes)

Needed ` under ~
(back ticks)
More later…

13

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

37

Activity 1 – A First Shell Script
Fix and Run
again:

$ hello

38

Shell Script Development Cycle

1. Decide what the script will do.
2. Make a list of commands.
3. Create a new file for the script.
4. Identify the shell the script will use.
5. Add commands and comments.
6. Save the script file.
7. Make the script file executable.
8. Type the name of the script to

execute it.
9. Debug and modify the script if

errors occur.

Creation of the
Shell Script.

Executing the
Shell Script

Debugging the
Shell Script

39

Creating the Shell Script

‘.sh’ is the conventional filename extension.
Use #!/path/to/shell on the first line of the
script to execute the script with the desired shell.
Otherwise, the parent shell is used.

#!/usr/sh
#!/usr/ksh

Avoid the names of Unix commands for your
filenames.

14

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

40

Saving Scripts

Create your own library scripts to save you
typing and time
Typing a full pathname for these would be
tedious

Create a personal bin directory to store their
shell scripts:
$ mkdir ~/bin
PATH=${PATH}:~/bin

41

Executing a Shell Script

A shell script is always run in a sub shell
(new process spawned).
You can run a shell script in two ways:

shell script_name at the command
line.
Make the script executable, then just use
the name of the script like a Unix
command.

42

Example: srm - Safely Remove a
File
#!/bin/sh
Script srm - Safely remove a file
Takes at least one argument (name of file)
Backs up file. Will only delete file if backup OK
if [$# -eq 0]; then
echo $0 requires at least one argument
exit

fi
while ([$# -gt 0])
do
cp $1 $HOME/BACKUP

$? returns exit status of last command
if [$? -eq 0]; then
rm $1

fi
shift gets the next argument, if any
shift;
done

15

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

43

Test of srm Script

44

Components of Shell Scripts

Shell Variables
Operators
Logic Structures

45

Variables

Variables are symbolic names that represent
values stored in memory
The three types of variables discussed in this
section are:

configuration variables
environment variables
shell variables

16

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

46

Configuration Variables

Use configuration variables to store information
about the setup of the operating system, and do
not change them
Configuration variables bear standard names,
such as HOSTNAME
Configuration variables are CAPITALIZED to
distinguish them from user variables

47

Environment Variables

Set up environment variables with initial values
that you can change as needed
UNIX reads these variables when you log in
They determine many characteristics of your
session
Environment variables bear standard names,
such as HOME, PATH, SHELL, USERNAME,
and PWD
Environment variables also CAPITALIZED to
distinguish them from user variables

48

Environment Variables

To use environment variables:
cd $HOME
myPath=$HOME
HOME=“/home/richard”
echo $HOME

17

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

49

.profile

The individual users UNIX version of
“autoexec.bat”

Sets environment variables
Defines shell prompt
Launches applications
Sets path

To see the .profile type:
more .profile

while in the $HOME Directory

50

Default .profile

A generic .profile is sometimes found in the
/etc/skel directory
When new accounts are created, copy the
.profile from /etc/skel to the users $HOME
directory and update the contents

51

Customizing Your Prompt

Your login prompt is configured automatically at
login in .profile
To see how it is set: type “echo $PS1” and
press enter

[\d \t \u \h \s \w \W]
\d = date \t = time \u=user \h=host name
\w = path of working directory
\W = name of the working directory w/o path

To set your prompt
PS1=“\d \t \W >”

Default prompt on buffy:
PS1=“\h:\u:\W$”

18

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

52

Alias

Allows you to create a shorthand for
frequently used commands
Put them in the .profile file

alias newname="unixcommand"
Stays in effect until session ended or it is
unaliased

53

Shell Variables

Shell variables are those you create at the
command line or in a shell script
Variables are not typecast

Shell programming languages do not use
typed variables, so the same variable can be
used to store integers one time and a string
the next

54

More Shell Variables

User-Created Shell Variables
string variables
myname=Richard
numberinclass=12

Notice there are no spaces between the
=operator and its operands
Echo will show you the value of a variable

echo $myname

To use the variable in an expression
YourVar=$MyVar

19

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

55

Storing Values

If you want a variable to contain the result of a
UNIX command, use the ` (back tick) to
enclose the command:

mywords=`wc –w mytext`

To set a variable to a string of characters
containing spaces:

MEMO="Meeting will be at noon today"
echo $MEMO

56

Activity: Using the Back Tick (`)

Type TODAY=`date` and press Enter.
This command:

creates the variable TODAY
executes the date command
stores the output of date in the variable TODAY

No output appears on the screen
Type echo $TODAY and press Enter.
You see the output of the date command that
was executed above.

57

Activity: Using the Back Tick (`)

20

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

58

Using Quotes: ' vs. "

' stops the shell from interpreting the value of a
variable

test="Wrong Answer"
echo "This is a $test"

Will print:
This is a Wrong Answer

However:
echo 'This is a $test'

Will print:
This is a $test

does not return the value
of test

59

Using Quotes: ' vs. "

60

‘Quotes’, “Quotes“, or `Back Ticks`?

21

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

61

More Variables

To list your environment variables:
The list of environment variables probably
spans more than one screen, so use the
more command with printenv or the set
command.

printenv | more
Or: set | more and press Enter

Press the spacebar to page through the
output

62

Exporting Shell Variables
to the Environment
Shell scripts cannot automatically access
variables created on the command line or by
other shell scripts

Shell variables are local variables
Only known to the shell that created it

To make a variable created on the command
line, or in another shell script generally
available, you must use the “export”
command to make it an environment variable

export $MyVar
export with no arguments will tell you what
has already been exported

63

Variables – Samples
$ CAT=kate First CAT gets its value
$ echo $CAT
kate
$ sh Create new shell
$ echo $CAT

Echo response to undefined variable
$CAT=munchkin A second CAT gets its value
$ echo $CAT
munchkin
$ ctrl-D
$ echo $CAT Return to old shell
kate Doesn’t know about new shell’s CAT
$

22

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

64

Variables – More Samples
export CAT
$ CAT=kate First CAT gets its value
$ echo $CAT
kate
$ sh Create new shell
$ echo $CAT
kate The new shell has a copy of the 1st CAT
$ CAT=munchkin A second CAT gets its value
$ echo $CAT
munchkin
$ ctrlD$ echo $CAT Return to old shell
kate Doesn’t know about new shell’s CAT
$

65

Special Variables

Null string
emptystring=''
emptystring=
emptystring=""

66

Interactive Scripts

To prompt the user to enter a value use the
“read” command: read username

echo Dear User, what is your name
read name
echo Glad to meet you, $name

23

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

67

Activity: Interactive Scripts

At the prompt type read username
press return – and enter a name – press
enter again to get back to the prompt
Type echo $username

68

Activity: Interactive Scripts

69

Conditional Operators

|| (OR)
&& (AND)

cc $* && a.out
Compiles the list of files given as command
line arguments.
If successful then executes the compiled
version

24

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

70

Using the Test Command

The test command
makes preliminary checks of the UNIX internal
environment and other useful comparisons
(beyond those that the if command alone can
perform)
can place the test command inside your shell
script
or execute it directly from the command line
uses operators expressed as options to
perform the evaluations

71

Using the Test Command (cont’d)

The test command can be used to:
Perform relational tests with integers (such as
equal, greater than, less than, etc.)
Test strings
Determine if a file exists and what type of file it
is
Perform Boolean tests

72

Shell Operators

The Bash shell operators are divided into three
groups:

1) Defining and evaluating operators
2) Arithmetic operators
3) Redirecting and piping operators

25

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

73

Operators

String Checking – String Tests
Numerical – Relational Integer Tests
Logical – Testing Files

74

Operators - String

String Checking
string1 = string2
string1 != string2

test $ans = yes (spaces are required)
test –n string True if the string has nonzero length
test –z string True if the string has zero length
test string True if the string is not a null string

75

Operators – String Sample

$ frog=bumpy
$ test $frog ; echo $?
0
$ test $frag ; echo $?
1
$

So what’s going on here??
• Test returns the value of the test in the variable ?
• You can see the result of the test by looking at ? with echo

(must use $? since ? is a variable)
• Here test is using the –n option by default (test if the length

of a string is nonzero) – See: man test

0 usually means FALSE
WHY does this return 0 ????

This was a typo – frag doesn’t
exist so WHY does this return 1
(TRUE) ????

26

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

76

Operators – String Sample

77

Arithmetic Operators

Arithmetic operators consist of
+ for addition
- for subtraction
* for multiplication
/ for division

When using arithmetic operators, the usual
mathematical precedence rules apply:

multiplication and division are performed
before addition and subtraction

78

Example Arithmetic Operators

Create a simple shell script
Use two variables and assign them a numeric
value
a=10
b=20

Print out the results of
a+b b-a b/a a*b

Solution: a=1
b=2
let c=a+b
let d=b-a
let e=a*b
let f=b/a
echo $c $d $e $f

27

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

79

Performing Boolean Tests with
the Test Command
The test command’s Boolean operators let
you combine multiple expressions with AND
and OR relationships
The -a operator combines two expressions
and tests a logical AND relationship between
them
The form of the test command with the -a
option is:

test expression1 -a expression 2

Next screen: use the test command to
determine if a directory exists

80

Testing Files with the Test
Command
The test command can be used to determine

if a file exists
if it has a specified permission or attribute
(such as executable, readable, writeable,
directory, etc.)

81

Testing Files with the Test
Command

28

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

82

Logical Operators - Examples
test –rw fleas

not allowed, you cannot combine options like this
test ! –r flam

! Negates the expression that follows
test –r flam –a –w flam

-a Binary and operator
test –r flam –o –w flam

-o Binary or operator

Parentheses may also be used for grouping

83

Shell Logic Structures

The four basic logic structures needed for
program development are:

Sequential logic
Decision logic
Looping logic
Case logic

84

Sequential Logic

Sequential logic states that commands will be
executed in the order in which they appear in
the program
The only break in this sequence comes when
a branch instruction changes the flow of
execution

29

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

85

Decision Logic - if Statement
if control command
then

commands
else

commands
fi

You can nest a control structure, such as the
if statement, inside another control structure

The first if statement controls when the second
if statement is executed
The second if statement is located in the first if
statement’s else section

86

if then … elif then Statement
if control command1
then

commands
elif control command2
then

commands
else

commands
fi

87

if Statement Example
if [$day = "Monday"]
then

echo First day of the work week.
echo Search todo for Monday.
grep -i monday todo

fi

30

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

88

if Statement Example 2

a=1
b=2
if [$a -lt $b]; then

echo “$a is less than $b”
elif [$a -eq $b]; then

echo “$a is equal to $b”
else

echo “$a is greater than $b”
fi

89

if Statement Logical Examples

-a logical and
if [$a –lt $b –a $b –lt $c]

-o logical or
if [$a –lt $b –o $b –lt $c]

-z Tests if string length is zero
if [-z $test]

-n Tests if string length is greater than zero
if [-n $test]

90

Other if Capabilities

If [-d $file] - is $file a directory
[-f $file] - is $file a regular file
[-r $file] - is read permission set
[-w $file] - is write permission set
[-x $file] - is execute permission set
[-s $file] - is the file empty

31

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

91

Looping Logic

In looping logic, a control structure (or loop)
repeats until some condition exists or some
action occurs
Two looping mechanisms in this section:

for loop
while loop

92

for Loops

Use the for command for looping through a
range of values

causes a variable to take on each value in a
specified set, one at a time, and perform some
action while the variable contains each
individual value
for i in fly spider frog
do
echo $i
echo $i

done

93

for Loops – Page 2
for i in $*
do
echo $i

done

32

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

94

for Loops – Page 3
for i in fly spider frog
for i in $*
for I
For file in *

95

The while Loop

A different pattern for looping is created using
the while statement
The while statement best illustrates how to
set up a loop to test repeatedly for a matching
condition
The while loop tests an expression in a
manner similar to the if statement
As long as the statement inside the brackets
is true, the statements inside the do and done
statements repeat

96

while Loop Syntax
while control command
do
commands

done

33

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

97

while Loop Example
echo –n "try to guess my favorite color "
read guess
while ["$guess" != "red"];
do

echo "No, not that one. Try again. "
read guess

done

98

The until Statement

A looping structure
Used to execute a series of commands until a
specific condition is true

until expression
do

statements
done

until [“$loopcount” –gt 5]
do

echo “$loopcount”
let loopcount=$loopcount+1

done

99

Case Logic
The Case Statement
The case statement simplifies the selection of
a match when you have a list of choices
It allows your program to perform one of
many actions, depending upon the value of a
variable
The two semicolons ;; terminate the action(s)
taken after the case matches to the test

34

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

100

Case Statement Syntax
case value in

choice1) commands ; ;
choice2) commands ; ;
…

esac

choice1 and choice2 are labels

101

Case Statement Example
read a
case $a in

1) echo "You entered 1" ;;
2) echo "You entered 2" ;;
3 | 4) echo "You entered 3 or 4" ;;
*) echo "You entered something else" ;;

esac

102

Activity: if Statement
echo –n "What is your favorite operating
system? "

read OS_NAME
if ["$os_NAME" = "UNIX"]
then

echo "You will like Linux."
else

if ["$OS_NAME" = "Windows"]
then

echo "A great OS for applications."
else

echo "You should give Linux a try!"
fi

fi

35

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

103

Activity: for Loop
for USERS in john ellen tom becky jim
do

echo $USERS
done

104

Menu Script Example
#!/bin/sh
while true
do
Display a menu
echo
echo "Make a choice from the menu below:"
echo
echo "1 Restore Archive
echo "2 Backup directory"
echo "3 Quit"
echo
Read the user's selection
echo "Enter Choice: "
read CHOICE
echo $CHOICE

done

105

Positional Parameters

Information can be passed into a shell script on
the command line in the form of arguments.
These arguments are stored in special variables.
This was used in the srm script earlier.

36

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 7

106

Exit Status Command

A command run from the command line or a shell
script returns a value to the parent process
indicating its success or failure called an Exit
Status.
A command defines what a given exit status
means. The convention is that a return value of 0
(zero) is a success, and a non-zero value is
failure.
This is how if statements determine which blocks
of code to execute.
The variable $? is defined automatically by the
shell to hold the exit status of the last command
executed.
Use exit 0 as the last line of a shell script to
indicate successful completion.

