
1

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

CISC 151
The UNIX Operating
System

Lecture 6

Richard L. Holladay, CCNA, Ph.D.

Lecture 6

Filters
Regular Expressions
grep
sed
Introducing awk

3

Filters

A class of Unix tools
Utilities that read from standard input (stdin)
transform the file, and write to standard output
(stdout)

Using filters can be thought of as
data oriented programming.
Each step of the computation transforms the
data stream.

2

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

4

Examples of Filters

sort
Input: lines from a file
Output: lines from the file sorted

grep
Input: lines from a file
Output: lines that match the argument

awk
Programmable filter

5

cat: The Simplest Filter

The cat command copies its input to output
unchanged (identity filter).
When supplied a list of file names, it
concatenates them and sends them to stdout.
Some options:

-n number output lines (starting from 1)
-v display control-characters in visible form

(e.g., ^C)

cat file*

ls | cat -n

6

head

Display the first few lines of a specified file
Syntax: head [-n] [filename...]

-n - number of lines to display, default is 10
filename... - list of filenames to display

When more than one filename is specified,
the start of each files listing displays
==>filename<==

3

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

7

tail

Displays the last part of a file
Syntax: tail +|-number [lbc] [f] [filename]

or: tail +|-number [l] [rf] [filename]
+number - begins copying at distance number from
beginning of file, if number isn’t given, defaults to 10
-number - begins from end of file
l,b,c - number is in units of lines/block/characters
r - print in reverse order (lines only)
f - if input is not a pipe, do not terminate after end of file
has been copied but loop. This is useful to monitor a
file being written by another process

8

head and tail examples

head /etc/passwd

head *.c

tail +20 /etc/passwd

ls -lt | tail -3

head –100 /etc/passwd | tail -5

tail –f /usr/local/httpd/access_log

9

tee

Copy standard input to standard output and
one or more files

Captures intermediate results from a filter in
the pipeline

Unix Command Standard output

file-list

4

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

10

tee (cont’d)

Syntax: tee [-ai] file-list
-a - append to output file rather than overwrite,
default is to overwrite (replace) the output file
-i - ignore interrupts
file-list - one or more file names for capturing
output

Examples

ls | head –10 | tee first_10 | tail –5

who | tee user_list | wc

11

John 99
Anne 75
Andrew 50
Tim 95
Arun 33
Sowmya 76

COMP1011|2252424|Abbot, Andrew John |3727|1|M
COMP2011|2211222|Abdurjh, Saeed |3640|2|M
COMP1011|2250631|Accent, Aac-Ek-Murhg |3640|1|M
COMP1021|2250127|Addison, Blair |3971|1|F
COMP4012|2190705|Allen, David Peter |3645|4|M
COMP4910|2190705|Allen, David Pater |3645|4|M

root:ZHolHAHZw8As2:0:0:root:/root:/bin/ksh
jas:nJz3ru5a/44Ko:100:100:John Shepherd:/home/jas:/bin/ksh
cs1021:iZ3sO90O5eZY6:101:101:COMP1021:/home/cs1021:/bin/bash
cs2041:rX9KwSSPqkLyA:102:102:COMP2041:/home/cs2041:/bin/csh
cs3311:mLRiCIvmtI9O2:103:103:COMP3311:/home/cs3311:/bin/sh

Tab Separated Pipe-separated

Colon-separated

Unix Text Files: Delimited Data

12

cut: Select Columns

The cut command prints selected parts of input lines.
can select columns (assumes tab-separated input)
can select a range of character positions

Some options:
-f listOfCols: print only the specified columns (tab-
separated) on output
-c listOfPos: print only chars in the specified positions
-d c: use character c as the column separator

Lists are specified as ranges (e.g. 1-5) or comma-
separated (e.g. 2,4,5).

5

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

13

cut Examples

cut -f 1 < data

cut -f 1-3 < data

cut -f 1,4 < data

cut -f 4- < data

cut -d'|' -f 1-3 < data

cut -c 1-4 < data

Unfortunately, there's no way to refer to "last
column" without counting the columns.

14

paste: Join Columns

The paste command displays several text files "in
parallel" on output.
If the inputs are files a, b, c

the first line of output is composed
of the first lines of a, b, c
the second line of output is composed
of the second lines of a, b, c

Lines from each file are separated by a tab character.
If files are different lengths, output has all lines from
longest file, with empty strings for missing lines.

1
2

3
4

5
6

1 3 5
2 4 6

15

paste Example

cut -f 1 < data > data1

cut -f 2 < data > data2

cut -f 3 < data > data3

paste data1 data3 data2 > newdata

6

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

16

sort: Sort Lines of a File

The sort command copies input to output but
ensures that the output is arranged in ascending
order of lines.

By default, sorting is based on ASCII comparisons of
the whole line.

Other features of sort:
understands text data that occurs in columns.
(can also sort on a column other than the first)
can distinguish numbers and sort appropriately
can sort files "in place" as well as behaving like a filter
capable of sorting very large files

17

sort: Options

Syntax: sort [-dftnr] [-o filename] [filename(s)]
-d Dictionary order, only letters, digits, and whitespace

are significant in determining sort order
-f Ignore case (fold into lower case)
-t Specify delimiter
-n Numeric order, sort by arithmetic value instead of

first digit
-r Sort in reverse order
-o filename - write output to filename, filename can be

the same as one of the input files
Lots of more options…

18

sort: Specifying fields
Delimiter : -td
Old way:

+f[.c][options] [-f[.c][options]
+2.1 –3 +0 –2 +3n

Exclusive
Start from 0 (unlike cut, which starts at 1)

New way:
-k f[.c][options][,f[.c][options]]

-k2.1 –k0,1 –k3n
Inclusive
Start from 1

7

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

19

sort Examples

sort +2nr < data
sort –k2nr data

sort -t: +4 /etc/passwd

sort -o mydata mydata

20

uniq: list UNIQue items

Remove or report adjacent duplicate lines
Syntax: uniq [-cdu] [input-file] [output-file]
-c Supersede the -u and -d options and

generate an output report with each line
preceded by an occurrence count

-d Write only the duplicated lines
-u Write only those lines which are not

duplicated
The default output is the union
(combination) of -d and -u

21

wc: Counting results

The word count utility, wc, counts the number
of lines, characters or words
Options:

-l Count lines
-w Count words
-c Count characters

Default: count lines, words and chars

8

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

22

wc and uniq Examples

who | sort | uniq –d

wc my_essay

who | wc

sort file | uniq | wc –l

sort file | uniq –d | wc –l

sort file | uniq –u | wc -l

23

tr: TRanslate Characters

Copies standard input to standard output
with substitution or deletion of selected
characters
Syntax: tr [-cds] [string1] [string2]
• -d delete all input characters contained in

string1
• -c complements the characters in string1 with

respect to the entire ASCII character set
• -s squeeze all strings of repeated output

characters in the last operand to single
characters

24

tr (continued)

tr reads from standard input.
Any character that does not match a character in string1
is passed to standard output unchanged
Any character that does match a character in string1 is
translated into the corresponding character in string2 and
then passed to standard output

Examples
tr s z replaces all instances of s with z
tr so zx replaces all instances of s with z and o with x
tr a-z A-Z replaces all lower case chars with upper case
tr –d a-c deletes all a-c characters

9

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

25

tr uses

Change delimiter
tr ‘|’ ‘:’

Rewrite numbers
tr ,. .,

Import DOS files
tr –d ’\r’ < dos_file

Find printable ASCII in a binary file
tr –cd ’\n[a-zA-Z0-9]’ < binary_file

26

xargs

Unix limits the size of arguments and environment
that can be passed down to a child
What happens when we have a list of 10,000 files to
send to a command?
xargs solves this problem

Reads arguments as standard input
Sends them to commands that take file lists
May invoke program several times depending on size
of arguments

a1 … a300

cmd a1 a2 …
xargs
cmd

cmd a100 a101 …

cmd a200 a201 …

27

find and xargs

find . -type f -print | xargs wc -l
-type f for files
-print to print them out
xargs invokes wc 1 or more times

wc -l a b c d e f g
wc -l h i j k l m n o
…

Compare to: find . -type f –exec wc -l {} \;

10

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

Regular Expressions

Finite Automata

29

What Is a Regular Expression?

A regular expression describes a pattern or a
particular sequence of characters, but not necessarily
the exact sequence.
Regular expressions descend from a fundamental
concept in Computer Science called finite automata
theory
Regular expressions are ubiquitous to Unix

vi, ed, sed, and emacs
awk, tcl, perl and Python
grep, egrep, fgrep
various compilers

Use metacharacters or special symbols

30

Regular Expressions
Not all metacharacters used in regular expressions
are available for all of these programs

The basic set was introduced with ed, the line editor
and made available to grep

Called the Basic Metacharaters
sed uses the same metacharacters as ed and grep
egrep later introduced an extended set of
metacharacters

awk essentially uses the same extended set as egrep
The simplest regular expression is a string of literal
characters.
There is a hit if a string matches the regular
expression.

11

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

31

UNIX Tools rock.

match

UNIX Tools suck.

match

UNIX Tools are okay.
no match

regular expression c k

32

Regular Expressions (cont’d)

A regular expression can match a string in
more than one place.

Scrapple with the apple.

match 1 match 2

regular expression a p p l e

Scrapple: Pork trimmings cooked with cornmeal
and seasonings, formed into a loaf, and
cooled. Sliced and fried before serving.

33

Regular Expressions (cont’d)

The . regular expression can be used to
match any character.

For me to hop on.

match 1 match 2

regular expression o .

12

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

34

Character Classes

A character classe [] can be used to match
a single character to a specific set of
characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

35

Negated Character Classes

Character classes can be negated with the
[^] syntax (i.e., match with anything other
than the expression.)

beat a brat on a boat

match

regular expression b [^eo] a t

36

More About Character Classes

[aeiou] will match any of the characters a, e, i, o,
or u
[kK]orn will match korn or Korn

A range can also be specified in a character class
[1-9] is the same as [123456789]
[abcde] is equivalent to [a-e]
You can also combine multiple ranges

[abcde123456789] is equivalent to [a-e1-9]
Note that the - character indicates a range in a
character class only if it is not the first or last
character in the class.
[-123] would match the characters -, 1, 2, or 3

13

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

37

Named Character Classes

Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)
Syntax [:name:]

[a-zA-Z] [[:alpha:]]
[a-zA-Z0-9] [[:alnum:]]
[45a-z] [45[:lower:]]

Important for portability across languages

38

Anchors

Anchors are used to match at the beginning
or end of a line (or both).
^ means beginning of the line
$ means end of the line

39

beat a brat on a boat

match

regular expression ^ b [eor] a t

regular expression b [eor] a t $

beat a brat on a boat

match

^word

14

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

40

Repetition

The * is used to define zero or more
occurrences of the single regular
expression preceding it.
Note that this is different to how it is
interpreted in the shell

e.g., ls *

41

I got mail, yaaaaaaaaaay!

match

regular expression y a * y

I love hula hoops.

match

regular expression o a * o

.*

= match zero or more a’s between o and o

42

Repetition Ranges

Other ways to specify ranges:
{ } Specify a range of repetitions for the

immediately preceding regex
{n} = exactly n occurrences
{n,} = at least n occurrences
{n,m} = at least n occurrences but no

more than m occurrences
Example:

.{0,} same as .*
a{2,} same as aaa*

15

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

43

Subexpressions

If you want to group part of an expression so that * or
{ } applies to more than just the previous character,
use () notation
Subexpresssions are treated like a single character

a* matches 0 or more occurrences of a
abc* matches ab, abc, abcc, abccc, …
(abc)* matches abc, abcabc, abcabcabc, …
(abc){2,3} matches abcabc or abcabcabc

grep

g/re/p
global regular expression print

45

grep

grep comes from the ed (Unix text editor) search
command “global regular expression print” or g/re/p
This was such a useful command that it was written
as a standalone utility
There are two other variants, egrep and fgrep that
comprise the grep family
grep is the answer to the those times when you know
you want the file that contains a specific phrase but
you can’t remember its name

16

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

46

Family Differences

grep - uses regular expressions for pattern matching
fgrep - file grep, does not use regular expressions,
only matches fixed strings but can get search strings
from a file
egrep - extended grep, uses a more powerful set of
regular expressions but does not support
backreferencing, generally the fastest member of the
grep family
agrep – approximate grep; not standard

47

Syntax

The regular expressions we have seen so far
are common to grep and egrep.
grep and egrep use different regex syntax

grep: BREs (Basic RegExs)
egrep: EREs (Enhanced RegExs)

Major syntax differences:
grep: \(and \), \{ and \}
egrep: (and), { and }

48

Protecting Regex Metacharacters

Many special characters used in regexs
also have special meaning to the shell
A good idea is to get in the habit of
single quoting your regexs

This protects metacharacters from being
executed by the shell

If you get in the habit of always doing it,
you won’t have to worry about it when it
is necessary

17

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

49

Escaping Special Characters

Even though we are single quoting our regexs
so the shell won’t interpret metacharacters,
some characters are special to grep
(such as * and .)
To use metacharacters as literals escape the
character with a \ (backslash)
Suppose we want to search for the character
string ‘a*b*’

This will match zero or more ‘a’s followed by
zero or more ‘b’s, not what we want!
‘a*b*’ will fix this - now the asterisks are
treated as regular characters

50

egrep: Alternation

Regex also provides the Alternation character | for
matching one or another subexpression

(T|Fl)an will match ‘Tan’ or ‘Flan’
^(From|Subject): will match the From and Subject
lines of a typical email message

It matches a beginning of the line followed by either
the characters ‘From’ or ‘Subject’ followed by a ‘:’

Subexpressions are used to limit the scope of the
alternation

At(ten|nine)tion then matches “Attention” or
“Atninetion”, not “Atten” or “ninetion” as would happen
without the parenthesis - Atten|ninetion

51

egrep: Repetition

Recall that the * (asterisk) specifies zero or more
occurrences of the character which immediately
precedes it
+ (plus) means “one or more”, thus:
abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but will
not match ‘abd’
Equivalent to {1,}

18

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

52

egrep: Repetition (cont’d)

The ‘?’ (question mark) specifies an optional
character, the single character that immediately
precedes it

July? will match ‘Jul’ or ‘July’
Equivalent to {0,1}
Also equivalent to (Jul|July)

The *, ?, and + are known as quantifiers because
they specify the quantity of a match
Quantifiers can also be used with subexpressions

(a*c)+ will match ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’ but
will not match ‘a’ or a blank line

53

grep: Back References

Sometimes it is handy to be able to refer to a match
that was made earlier in a regular expression
This is done using a back reference

\n is the back reference specifier, where n is a number
Looks for nth subexpression
For example:
to see if the first word of a line is the same as the last:

^\([[:alpha:]]\{1,\}\) .* \1$
The \([[:alpha:]]\{1,\}\) matches 1 or more
letters

54

Metacharacters

Summary of Metacharacters

Matches a range of occurrences of the single
character that immediately precedes it. n, will
match exactly n occurrences, n,m any number
of occurrences between n and m

\{n,m\}

Matches any one of the class of characters
enclosed in the brackets with one character

[. . .]

As the last character of a regex, matches the
end of the line

$

Escapes the special character that follows\

As the first character of a regex, matches the
beginning of the line

^

Matches any number of the single character
preceding it

*
Matches any single character.

19

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

55

Metacharacters (cont’d)

Extended Metacharacters (egrep and awk)

Either the preceding or the following regex can
be matched (alternation)

|

Matches a range of occurrences of the single
character that immediately precedes it.n, will
match exactly n occurrences, n,m any number
of occurrences between n and m

{n,m}

Groups regular expressions()

Matches zero or one occurrence of the
preceding regular expression

?

Matches one or more occurrences of the
preceding regular expression

+

56

Practical Regex Examples

Variable names in C
[a-zA-Z][a-zA-Z 0-9]*

Dollar amount with optional cents
\$[0-9]+(\.[0-9][0-9])?

Time of day
(1[012]|[1-9]):[0-5][0-9] (am|pm)

HTML headers <h1> <H1> <h2> …
<[hH][1-4]>

57

grep Family
Syntax
grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]

-h Do not display filenames
-i Ignore case
-l List only filenames containing matching lines
-n Precede each matching line with its line number
-v Negate matches
-x Match whole line only (fgrep only)
-e expression Specify expression as option
-f filename Take the regular expression (egrep) or

a list of strings (fgrep) from filename

20

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

58

grep Examples
grep 'men' GrepMe
grep 'fo*' GrepMe
egrep 'fo+' GrepMe
egrep -n '[Tt]he' GrepMe
fgrep 'The' GrepMe
egrep 'NC+[0-9]*A?' GrepMe
fgrep -f expfile GrepMe

• Find all lines with signed numbers
$ egrep ’[-+][0-9]+\.?[0-9]*’ *.c
bsearch. c: return -1;
compile. c: strchr("+1-2*3", t-> op)[1] - ’0’, dst,
convert. c: Print integers in a given base 2-16 (default 10)
convert. c: sscanf(argv[i+1], "% d", &base);
strcmp. c: return -1;
strcmp. c: return +1;

• egrep has its limits: For example, it cannot match all lines that
contain a number divisible by 7.

59

Other Notes

Use /dev/null as an extra file name
Will print the name of the file that matched

grep test bigfile
This is a test.

grep test /dev/null bigfile
bigfile:This is a test.

Return code of grep is useful
grep fred filename > /dev/null && rm filename

x

xyz

Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Ordinary strings match themselves

\m
^
$
.

[xy^$x]
[^xy^$z]

[a-z]
r*

r1r2

Matches literal character m
Start of line
End of line
Any single character
Any of x, y, ^, $, or z
Any one character other than x, y, ^, $, or z
Any single character in given range
zero or more occurrences of regex r
Matches r1 followed by r2

\(r\)
\n

\{n,m\}

Tagged regular expression, matches r
Set to what matched the nth tagged expression
(n = 1-9)
Repetition

r+
r?

r1|r2
(r1|r2)r3
(r1|r2)*

{n,m}

One or more occurrences of r
Zero or one occurrences of r
Either r1 or r2
Either r1r3 or r2r3
Zero or more occurrences of r1|r2, e.g., r1, r1r1,
r2r1, r1r1r2r1,…)
Repetition

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text

o.*o
input line
regular expression

Quick
Reference

21

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

sed

The Stream Editor
Stream-oriented, Non-Interactive, Text

Editor

62

Sed: Stream-oriented, Non-
Interactive, Text Editor
Looks for patterns one line at a time, like
grep
Changes lines of a file
Non-interactive text editor

Editing commands entered as a script
Interactive editor ed which uses the same
commands

A Unix filter
A superset of previously mentioned tools

63

Conceptual Overview

All editing commands in a sed script are
applied in order to each input line.
If a command changes the input, subsequent
commands will be applied to the current
(modified) line in the pattern space, not the
original line.
The original input file is unchanged (sed is a
filter), and the results are sent to standard
output (but can be redirected to a file).

22

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

64

Sed Architecture

scriptfile

Input

Output

Input line
(Pattern Space)

Hold Space

65

Scripts

A script is nothing more than a file containing
commands
Each command consists of upto two addresses and
an action, where the address can be a regular
expression or line number.

address action command

address action

address action

address action

address action

script

66

Scripts (continued)

As each line of the input file is read, sed reads the
first command of the script and checks the address
against the current input line:

If there is a match, the command is executed
If there is no match, the command is ignored
sed then repeats this action for every command in the
script file

When it has reached the end of the script, sed
outputs the current line (pattern space) unless
the -n option has been set

23

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

67

Sed Flow of Control
sed then reads the next line in the input file and
restarts from the beginning of the script file
All commands in the script file are compared to, and
potentially act on, all lines in the input file

. . .cmd 1 cmd ncmd 2

script

input

output
output

only without -n

print cmd

68

sed Commands

sed commands have the general form
[address[, address]][!]command [arguments]

sed copies each input line into a pattern space
If the address of the command matches the line in the
pattern space, the command is applied to that line
If the command has no address, it is applied to each
line as it enters pattern space
If a command changes the line in pattern space,
subsequent commands operate on the modified line

When all commands have been read, the line in
pattern space is written to standard output and a new
line is read into pattern space

69

Addressing

An address can be either a line number or a
pattern, enclosed in slashes (/pattern/)
A pattern is described using basic regular
expressions (BREs, as in grep)
If no pattern is specified, the command will be
applied to all lines of the input file
To refer to the last line: $

24

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

70

Addressing (continued)

Most commands will accept two addresses
If only one address is given, the command
operates only on that line
If two comma separated addresses are given,
then the command operates on a range of
lines between the first and second address,
inclusively

The ! operator can be used to negate an
address, ie; address!command causes
command to be applied to all lines that do not
match address

71

Commands

command is a single letter
Example: Deletion: d
[address1][,address2]d

Delete the addressed line(s) from the pattern space;
line(s) not passed to standard output.
A new line of input is read and editing resumes with the
first command of the script.

72

Address and Command Examples

d deletes the all lines
6d deletes line 6
/^$/d deletes all blank lines
1,10d deletes lines 1 through 10
1,/^$/d deletes from line 1 through the first blank line
/^$/,$d deletes from the first blank line through

the last line of the file
/^$/,10d deletes from the first blank line through line 10
/^ya*y/,/[0-9]$/d deletes from the first line that begins

with yay, yaay, yaaay, etc. through
the first line that ends with a digit

25

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

73

Multiple Commands

Braces {} can be used to apply multiple commands
to an address

[/pattern/[,/pattern/]]{
command1
command2
command3
}

Strange syntax:
The opening brace must be the last character on a
line
The closing brace must be on a line by itself
Make sure there are no spaces following the
braces

74

sed Commands

Although sed contains many editing commands, we
are only going to cover the following subset:

• d - delete
•p - print
• y - transform
• q - quit

• s - substitute
• a - append
• i - insert
• c - change

75

sed Syntax

Syntax: sed [-n] [-e] [‘command’] [file…]
sed [-n] [-f scriptfile] [file…]

-n - only print lines specified with the print command (or
the ‘p’ flag of the substitute (‘s’) command)

-f scriptfile - next argument is a filename containing
editing commands

-e command - the next argument is an editing command
rather than a filename, useful if multiple commands
are specified
If the first line of a scriptfile is “#n”, sed acts as though
-n had been specified

26

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

76

Print

The Print command (p) can be used to force the
pattern space to be output, useful if the -n option has
been specified
Syntax: [address1[,address2]]p
Note: if the -n or #n option has not been specified, p
will cause the line to be output twice!
Examples:

1,5p will display lines 1 through 5
/^$/,$p will display the lines from the first
blank line through the last line of the file

77

Substitute

Syntax: [address(es)]s/pattern/replacement/[flags]
pattern - search pattern
replacement - replacement string for pattern
flags - optionally any of the following

• n a number from 1 to 512 indicating which
occurrence of pattern should be
replaced

• g global, replace all occurrences of pattern
in pattern space

• p print contents of pattern space

78

Substitute Examples

s/Puff Daddy/P. Diddy/
Substitutes P. Diddy for the first occurrence of Puff Daddy
in pattern space

s/Tom/Dick/2
Substitutes Dick for the second occurrence of Tom in the
pattern space

s/wood/plastic/p
Substitutes plastic for the first occurrence of wood and
outputs (prints) pattern space

27

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

79

Replacement Patterns

Substitute can use several special characters
in the replacement string

& replaced by the entire string matched in the
regular expression for pattern

\n replaced by the nth substring (or sub
expression) previously specified using
“\(“ and “\)”

\ used to escape the ampersand (&) and
the backslash (\)

80

Replacement Pattern Examples
"the UNIX operating system …"
s/.NI./wonderful &/
"the wonderful UNIX operating system …"

cat test1
first:second
one:two
sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

sed 's/\([[:alpha:]]\)\([^ \n]*\)/\2\1ay/g'
Pig Latin ("unix is fun" -> "nixuay siay unfay")

81

Append, Insert, and Change

Syntax for these commands is a little strange
because they must be specified on multiple lines
append [address]a\

text
insert [address]i\

text
change [address(es)]c\

text
append/insert for single lines only, not range

28

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

82

Append and Insert

Append places text after the current line in pattern
space
Insert places text before the current line in pattern
space

Each of these commands requires a \ following
it.
text must begin on the next line.
If text begins with whitespace, sed will discard it
unless you start the line with a \

Example:
/<Insert Text Here>/i\
Line 1 of inserted text\
\ Line 2 of inserted text

would leave the following in the pattern space
Line 1 of inserted text

Line 2 of inserted text
<Insert Text Here>

83

Change

Unlike Insert and Append, Change can be applied to
either a single line address or a range of addresses
When applied to a range, the entire range is replaced
by text specified with change, not each line

Exception: If the Change command is executed with
other commands enclosed in { } that act on a range
of lines, each line will be replaced with text

No subsequent editing allowed

84

Change Examples

Remove mail headers, ie;
the address specifies a
range of lines beginning
with a line that begins
with From until the first
blank line.

The first example
replaces all lines with
a single occurrence of
<Mail Header
Removed>.
The second example
replaces each line with
<Mail Header
Removed>

/^From /,/^$/c\
<Mail Headers Removed>

/^From /,/^$/{
s/^From //p
c\
<Mail Header Removed>
}

29

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

85

Using !

If an address is followed by an exclamation point (!),
the associated command is applied to all lines that
don’t match the address or address range
Examples:
1,5!d would delete all lines except 1 through 5
/black/!s/cow/horse/ would substitute “horse”
for “cow” on all lines except those that contained
“black”

“The brown cow” -> “The brown horse”
“The black cow” -> “The black cow”

86

Transform

The Transform command (y) operates like tr, it does
a one-to-one or character-to-character replacement
Transform accepts zero, one or two addresses
[address[,address]]y/abc/xyz/

every a within the specified address(es) is transformed
to an x. The same is true for b to y and c to z
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNO
PQRSTUVWXYZ/ changes all lower case characters on
the addressed line to upper case
If you only want to transform specific characters (or a
word) in the line, it is much more difficult and requires
use of the hold space

87

Pattern and Hold spaces

Pattern space: Workspace or temporary
buffer where a single line of input is held
while the editing commands are applied
Hold space: Secondary temporary buffer for
temporary storage only

Pattern

Hold

in

out

h, H, g, G, x

30

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

88

Quit

Quit causes sed to stop reading new input lines and
stops sending them to standard output
It takes at most a single line address

Once a line matching the address is reached, the script
will be terminated
This can be used to save time when you only want to
process some portion of the beginning of a file

Example: to print the first 100 lines of a file (like
head) use:

sed '100q' filename
sed will, by default, send the first 100 lines of filename
to standard output and then quit processing

89

sed Advantages

Uses regular expressions
Fast
Concise

if expression is tested thoroughly!

90

sed Drawbacks

Hard to remember text from one line to
another
Not possible to go backward in the file
No way to do forward references like
/..../+1
No facilities to manipulate numbers
Cumbersome syntax especially for anything
complicated
Alternative to sed:

awk!

31

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

Introduction to awk

Programmable Filters

92

Aho Weinberger Kernighan

Why is it called awk?

93

awk Introduction

awk's purpose:
A general purpose programmable filter that handles
text (strings) as easily as numbers

This makes awk one of the most powerful of the Unix
utilities

awk processes fields while sed only processes lines
nawk (new awk) is the new standard for awk

Designed to facilitate large awk programs
gawk is a free nawk clone from GNU

awk gets it’s input from:
files
redirection and pipes
directly from standard input

32

San Diego Mesa College
CISC 151 UNIX Operating System
Richard L. Holladay, Ph.D.

Lecture 6

94

awk Highlights

A programming language for handling common data
manipulation tasks with only a few lines of code
awk is a pattern-action language, like sed
The language looks a little like C but automatically
handles input, field splitting, initialization, and
memory management

Built-in string and number data types
No variable type declarations

awk is a great prototyping language
Start with a few lines and keep adding until it does
what you want

95

awk Features over sed

Convenient numeric processing
Variables and control flow in the actions
Convenient way of accessing fields within
lines
Flexible printing
Built-in arithmetic and string functions
C-like syntax

More awk in a later lecture!

96

Relevant Texts From O’Reilly

Mastering Regular Expressions,
2nd Edition
July 2002
ISBN: 0-596-00289-0
484 pages, $39.95

sed & awk, 2nd Edition
Dale Dougherty, Arnold Robbins
March 1997
ISBN: 1-56592-225-5
432 pages, $34.95

